PINE LIBRARY

Kalmanfilter

237
Library "Kalmanfilter"
A sophisticated Kalman Filter implementation for financial time series analysis
Author Rocky-Studio
version 1.0

initialize(initial_value, process_noise, measurement_noise)
  Initializes Kalman Filter parameters
  Parameters:
    initial_value (float): (float) The initial state estimate
    process_noise (float): (float) The process noise coefficient (Q)
    measurement_noise (float): (float) The measurement noise coefficient (R)
  Returns: [float, float] A tuple containing [initial_state, initial_covariance]

update(prev_state, prev_covariance, measurement, process_noise, measurement_noise)
  Update Kalman Filter state
  Parameters:
    prev_state (float)
    prev_covariance (float)
    measurement (float)
    process_noise (float)
    measurement_noise (float)

calculate_measurement_noise(price_series, length)
  Adaptive measurement noise calculation
  Parameters:
    price_series (array<float>)
    length (int)

calculate_measurement_noise_simple(price_series)
  Parameters:
    price_series (array<float>)

update_trading(prev_state, prev_velocity, prev_covariance, measurement, volatility_window)
  Enhanced trading update with velocity
  Parameters:
    prev_state (float)
    prev_velocity (float)
    prev_covariance (float)
    measurement (float)
    volatility_window (int)

model4_update(prev_mean, prev_speed, prev_covariance, price, process_noise, measurement_noise)
  Kalman Filter Model 4 implementation (Benhamou 2018)
  Parameters:
    prev_mean (float)
    prev_speed (float)
    prev_covariance (array<float>)
    price (float)
    process_noise (array<float>)
    measurement_noise (float)

model4_initialize(initial_price)
  Initialize Model 4 parameters
  Parameters:
    initial_price (float)

model4_default_process_noise()
  Create default process noise matrix for Model 4

model4_calculate_measurement_noise(price_series, length)
  Adaptive measurement noise calculation for Model 4
  Parameters:
    price_series (array<float>)
    length (int)

Disclaimer

The information and publications are not meant to be, and do not constitute, financial, investment, trading, or other types of advice or recommendations supplied or endorsed by TradingView. Read more in the Terms of Use.