The Game of Momentum This provides the momentum of the stock.
When the curve changed to Blue line, indicate the buying opportunity
Moving Averages
EMA & SMA by TTC1. EMA 9, 15, 21:
Short-term trends: These EMAs are typically used for analyzing short-term price movements and finding quick trend reversals.
Use cases:
EMA 9: Reacts quickly to price changes and is often used as a trigger line for entry or exit.
EMA 15 and EMA 21: Offer slightly less sensitivity, reducing false signals compared to EMA 9.
2. 200 EMA and 200 SMA:
Long-term trend indicators: These averages are widely used to identify overall market direction.
Differences:
200 EMA: Puts more weight on recent prices, making it more responsive to recent market movements.
200 SMA: Gives equal weight to all prices in the 200-period, showing a smoother long-term trend.
Use cases:
Price above 200 EMA/SMA: Bullish trend.
Price below 200 EMA/SMA: Bearish trend.
Both averages act as key support/resistance levels.
Strategies Combining These Averages:
Trend Confirmation:
If EMAs (9, 15, 21) are aligned above the 200 EMA/SMA, it confirms a strong bullish trend.
If aligned below the 200 EMA/SMA, it confirms a strong bearish trend.
Crossover Signals:
When EMA 9 crosses above EMA 21: Potential buy signal.
When EMA 9 crosses below EMA 21: Potential sell signal.
Price crossing the 200 EMA/SMA can signal long-term trend shifts.
Dynamic Support/Resistance:
Use the EMAs (especially 9 and 21) as dynamic support/resistance for trailing stop-losses in trending markets.
The 200 EMA/SMA serves as a critical level where price often reacts significantly.
EMA + RSI + SR Key Features:
Inputs:
EMA Length (default: 50), RSI Length (14), HMA Length (20).
Overbought (70) and Oversold (30) RSI levels.
Support/Resistance Lookback (50).
Calculations:
EMA: Trend baseline.
HMA: Smoother trend detection.
RSI: Overbought/oversold conditions.
Support/Resistance Levels: Recent highs/lows over the lookback period.
Signals:
Buy: Uptrend + RSI oversold + near support.
Sell: Downtrend + RSI overbought + near resistance.
Visuals:
Plots EMA, HMA, RSI levels, support/resistance lines.
Buy/sell signals as labels on the chart.
Alerts:
Notifications for buy/sell signals.
Squeeze Pro Multi Time-Frame Analysis V2See all table time frames no matter what time frame chart you are on.
OctradingFxDétection de la session asiatique :
La session asiatique est définie entre 23h00 et 08h00 UTC (à ajuster selon votre fuseau horaire).
La variable asianSessionStart est utilisée pour identifier cette plage horaire.
Calcul des hauts et bas de la session asiatique :
Les variables asianHigh et asianLow stockent les plus hauts et plus bas de la session asiatique.
Ces valeurs sont réinitialisées à chaque nouvelle session.
Affichage de la zone de range :
La zone de range est affichée en arrière-plan avec bgcolor pour mettre en évidence la session asiatique.
Les lignes horizontales asianHigh et asianLow sont tracées pour visualiser les niveaux de range.
Intégration avec les cassages de la MA50 :
Les cassages de la MA50 sur H1 et H4 sont toujours affichés avec des flèches et des alertes.
Systematic Savings Plan - Store of Value DCA v1.1.1 Systematic Savings Plan - Store of Value DCA v1.1
Hey there! 👋 I've created this tool to help with systematic saving during downtrends. While it can be used with any asset, it's primarily designed for Store of Value assets (like BTC, Gold, etc.).
Why Store of Value Focus?
- These assets tend to preserve wealth long-term
- Often perform well after significant downtrends
- Make sense for systematic, patient accumulation
- Great for long-term savings plans
What This Tool Does:
- Spots potential saving opportunities in downtrends
- NO selling signals - purely for accumulation
- Helps maintain saving discipline when markets look scary
- Tracks your saving progress
- Works with any Store of Value asset you choose
How It Works:
1. Trend Check (24/200 EMA):
- Watches for downtrend patterns
- Nothing fancy, just classic EMA crossover
2. Market Stress Check (MFI):
- Default: 14 periods, level 20
- Helps spot high selling pressure
- Daily chart: These defaults work fine
- Weekly chart: You might want to adjust MFI to 20-30 range
Buy Frequency Control:
- Default minimum gap: 7 periods between saves
- Helps manage your saving schedule
- Perfect for monthly salary saving
- Prevents too frequent entries when you have limited funds
- Adjustable to match your cash flow:
• Weekly paycheck? Try 7 days
• Monthly salary? Try 28-30 days
• Custom schedule? Set your own interval!
When It Suggests Saving:
- Must be in downtrend
- MFI shows high selling pressure
- Minimum gap reached since last save
Savings Dashboard Shows:
- How much you've saved total
- Number of times you've saved
- Total assets accumulated
- Your average saving price
- Progress tracking
Customize It:
- Saving amount per entry
- Time between saves
- Technical settings
- Pick your date range
- Choose your asset
Important Honest Notes:
- Just an experiment, not financial advice
- Won't catch bottoms - that's not the point
- Focused on steady, patient accumulation
- You might get multiple signals in big downtrends
- Please adjust settings to match your savings plan
- Feel free to modify the code - make it yours!
- Past patterns don't predict the future
สวัสดีครับ! 👋 ผมสร้างเครื่องมือนี้เพื่อช่วยในการออมอย่างเป็นระบบในช่วงตลาดขาลง แม้จะใช้ได้กับสินทรัพย์ทั่วไป แต่ออกแบบมาเพื่อสินทรัพย์ประเภทเก็บมูลค่า (Store of Value) เป็นหลัก (เช่น BTC, ทองคำ เป็นต้น)
ทำไมถึงเน้นสินทรัพย์เก็บมูลค่า:
- มักรักษามูลค่าได้ในระยะยาว
- มักฟื้นตัวได้ดีหลังผ่านช่วงขาลงหนักๆ
- เหมาะกับการสะสมอย่างเป็นระบบและใจเย็น
- เหมาะสำหรับแผนการออมระยะยาว
เครื่องมือนี้ทำอะไร:
- หาจุดที่น่าสะสมในช่วงขาลง
- ไม่มีจุดขาย - เน้นการสะสมอย่างเดียว
- ช่วยรักษาวินัยการออมเมื่อตลาดน่ากลัว
- ติดตามความคืบหน้าการออม
- ใช้ได้กับสินทรัพย์เก็บมูลค่าที่คุณเลือก
ทำงานยังไง:
1. เช็คเทรนด์ (EMA 24/200):
- ดูรูปแบบขาลง
- ใช้แค่การตัด EMA แบบพื้นฐาน
2. เช็คแรงขาย (MFI):
- ค่าเริ่มต้น: 14 คาบ, ระดับ 20
- ช่วยหาจุดที่มีแรงขายสูง
- กราฟรายวัน: ใช้ค่าเริ่มต้นได้เลย
- กราฟรายสัปดาห์: ลองปรับ MFI เป็น 20-30
การควบคุมความถี่ในการออม:
- ค่าเริ่มต้นขั้นต่ำ: เว้น 7 คาบระหว่างการออมแต่ละครั้ง
- ช่วยจัดการตารางการออมของคุณ
- เหมาะสำหรับการออมตามรอบเงินเดือน
- ป้องกันการออมถี่เกินไปเมื่อมีเงินจำกัด
- ปรับแต่งได้ตามกระแสเงินสด:
• รับเงินรายสัปดาห์? ลองตั้ง 7 วัน
• เงินเดือน? ลองตั้ง 28-30 วัน
• มีแผนเฉพาะตัว? ตั้งค่าเองได้เลย!
จะแนะนำให้ออมเมื่อ:
- อยู่ในช่วงขาลง
- MFI แสดงแรงขายสูง
- ถึงรอบเวลาออมตามที่ตั้งไว้
แดชบอร์ดแสดง:
- ออมไปเท่าไหร่แล้ว
- ออมกี่ครั้งแล้ว
- สะสมสินทรัพย์ได้เท่าไหร่
- ราคาเฉลี่ยที่ออม
- ติดตามความคืบหน้า
ปรับแต่งได้:
- จำนวนเงินออมต่อครั้ง
- ระยะห่างระหว่างออม
- ค่าทางเทคนิค
- เลือกช่วงวันที่ต้องการ
- เลือกสินทรัพย์ที่ต้องการออม
หมายเหตุสำคัญ (พูดกันตรงๆ):
- เป็นแค่การทดลอง ไม่ใช่คำแนะนำการลงทุน
- ไม่ได้จับจุดต่ำสุด - ไม่ใช่จุดประสงค์หลัก
- เน้นการสะสมอย่างสม่ำเสมอและใจเย็น
- อาจมีสัญญาณหลายครั้งในช่วงขาลงยาว
- ปรับค่าต่างๆ ให้เข้ากับแผนการออมของคุณ
- แก้ไขโค้ดได้ตามใจชอบ - ทำให้เป็นของคุณ!
- รูปแบบในอดีตไม่ได้การันตีอนาคต
Moving Average Shaded with Angle2 moving averages which you can edit in the settings. Selections are SMA,EMA or HMA and of course how many periods are available. In addition to the moving averages you have a color coded Cloud showing bullish or bearish trends. Lastly there are 3 print tables Top Right, Bottom Right and Middle Right. Top Right is the angle of the fast moving average. Bottom Right is the angle of the slow moving average and Middle right is an average of the 2. These are also color coded green numbers are bullish and red numbers are bearish. In the settings are threshold fields which allow increasing angle thresholds to give grey numbers if the angles are below these thresholds allowing for numerically quantifying sideways markets vs strong trending markets.
TEMA,SMA & VWAP Indicator//@version=5
indicator("TEMA,SMA & VWAP Indicator", overlay=true)
// Input parameter for TEMA length
tema_length = input.int(title="TEMA Length", defval=30, minval=1, step=1)
// Input settings for SMAs
sma5_length = input.int(5, title="SMA 5 Length")
sma20_length = input.int(20, title="SMA 20 Length")
sma50_length = input.int(50, title="SMA 50 Length")
sma100_length = input.int(100, title="SMA 100 Length")
sma200_length = input.int(200, title="SMA 200 Length")
// Calculate TEMA manually
ema1 = ta.ema(close, tema_length)
ema2 = ta.ema(ema1, tema_length)
ema3 = ta.ema(ema2, tema_length)
tema = 3 * (ema1 - ema2) + ema3
// Calculate SMAs
sma5 = ta.sma(close, sma5_length)
sma20 = ta.sma(close, sma20_length)
sma50 = ta.sma(close, sma50_length)
sma100 = ta.sma(close, sma100_length)
sma200 = ta.sma(close, sma200_length)
// VWAP Calculation
vwap = ta.vwap
// Plot TEMA
plot(tema, title="TEMA", color=color.orange, linewidth=1, style=plot.style_line)
// Plot SMAs
plot(sma5, color=color.yellow, title="SMA 5")
plot(sma20, color=color.purple, title="SMA 20")
plot(sma50, color=color.red, title="SMA 50")
plot(sma100, color=color.green, title="SMA 100")
plot(sma200, color=color.black, title="SMA 200")
// Plot VWAP
plot(vwap, color=color.blue, linewidth=1, title="VWAP")
// Optional: Add background color based on trend
bgcolor(close > sma200 ? color.new(color.green, 90) : close < sma200 ? color.new(color.red, 90) : na, title="Trend Background")
TEMA,SMA & VWAP Indicator//@version=5
indicator("TEMA,SMA & VWAP Indicator", overlay=true)
// Input parameter for TEMA length
tema_length = input.int(title="TEMA Length", defval=30, minval=1, step=1)
// Input settings for SMAs
sma5_length = input.int(5, title="SMA 5 Length")
sma20_length = input.int(20, title="SMA 20 Length")
sma50_length = input.int(50, title="SMA 50 Length")
sma100_length = input.int(100, title="SMA 100 Length")
sma200_length = input.int(200, title="SMA 200 Length")
// Calculate TEMA manually
ema1 = ta.ema(close, tema_length)
ema2 = ta.ema(ema1, tema_length)
ema3 = ta.ema(ema2, tema_length)
tema = 3 * (ema1 - ema2) + ema3
// Calculate SMAs
sma5 = ta.sma(close, sma5_length)
sma20 = ta.sma(close, sma20_length)
sma50 = ta.sma(close, sma50_length)
sma100 = ta.sma(close, sma100_length)
sma200 = ta.sma(close, sma200_length)
// VWAP Calculation
vwap = ta.vwap
// Plot TEMA
plot(tema, title="TEMA", color=color.orange, linewidth=1, style=plot.style_line)
// Plot SMAs
plot(sma5, color=color.yellow, title="SMA 5")
plot(sma20, color=color.purple, title="SMA 20")
plot(sma50, color=color.red, title="SMA 50")
plot(sma100, color=color.green, title="SMA 100")
plot(sma200, color=color.black, title="SMA 200")
// Plot VWAP
plot(vwap, color=color.blue, linewidth=1, title="VWAP")
// Optional: Add background color based on trend
bgcolor(close > sma200 ? color.new(color.green, 90) : close < sma200 ? color.new(color.red, 90) : na, title="Trend Background")
isikh1998sma 50 ema 200 vwap previous day high low close.................
add auto trendlines with it if you like
5-13-26-50-200All in one EMA.
I have added important EMAs in this script.
5,13 and 26 can be treated as short-term EMAs.
50 and 200 EMAs are can be used as long term.
EMA Study Script for Price Action Traders, v2JR_EMA Research Tool Documentation
Version 2 Enhancements
Version 2 of the JR_EMA Research Tool introduces several powerful features that make it particularly valuable for studying price action around Exponential Moving Averages (EMAs). The key improvements focus on tracking and analyzing price-EMA interactions:
1. Cross Detection and Counting
- Implements flags for crossing bars that instantly identify when price crosses above or below the EMA
- Maintains running counts of closes above and below the EMA
- This feature helps students understand the persistence of trends and the frequency of EMA interactions
2. Bar Number Tracking
- Records the specific bar number when EMA crosses occur
- Stores the previous crossing bar number for reference
- Enables precise measurement of time between crosses, helping identify typical trend durations
3. Variable Reset Management
- Implements sophisticated reset logic for all counting variables
- Ensures accuracy when analyzing multiple trading sessions
- Critical for maintaining clean data when studying patterns across different timeframes
4. Cross Direction Tracking
- Monitors the direction of the last EMA cross
- Helps students identify the current trend context
- Essential for understanding trend continuation vs reversal scenarios
Educational Applications
Price-EMA Relationship Studies
The tool provides multiple ways to study how price interacts with EMAs:
1. Visual Analysis
- Customizable EMA bands show typical price deviation ranges
- Color-coded fills help identify "normal" vs "extreme" price movements
- Three different band calculation methods offer varying perspectives on price volatility
2. Quantitative Analysis
- Real-time tracking of closes above/below EMA
- Running totals help identify persistent trends
- Cross counting helps understand typical trend duration
Research Configurations
EMA Configuration
- Adjustable EMA period for studying different trend timeframes
- Customizable EMA color for visual clarity
- Ideal for comparing different EMA periods' effectiveness
Bands Configuration
Three distinct calculation methods:
1. Full Average Bar Range (ABR)
- Uses the entire range of price movement
- Best for studying overall volatility
2. Body Average Bar Range
- Focuses on the body of the candle
- Excellent for studying conviction in price moves
3. Standard Deviation
- Traditional statistical approach
- Useful for comparing to other technical studies
Signal Configuration
- Optional signal plotting for entry/exit studies
- Helps identify potential trading opportunities
- Useful for backtesting strategy ideas
Using the Tool for Study
Basic Analysis Steps
1. Start with the default 20-period EMA
2. Observe how price interacts with the EMA line
3. Monitor the data window for quantitative insights
4. Use band settings to understand normal price behavior
Advanced Analysis
1. Pattern Recognition
- Use the cross counting system to identify typical pattern lengths
- Study the relationship between cross frequency and trend strength
- Compare different timeframes for fractal analysis
2. Volatility Studies
- Compare different band calculation methods
- Identify market regimes through band width changes
- Study the relationship between volatility and trend persistence
3. Trend Analysis
- Use the closing price count system to measure trend strength
- Study the relationship between trend duration and subsequent reversals
- Compare different EMA periods for optimal trend following
Best Practices for Research
1. Systematic Approach
- Start with longer timeframes and work down
- Document observations about price behavior in different market conditions
- Compare results across multiple symbols and timeframes
2. Data Collection
- Use the data window to record significant events
- Track the number of bars between crosses
- Note market conditions when signals appear
3. Optimization Studies
- Test different EMA periods for your market
- Compare band calculation methods for your trading style
- Document which settings work best in different market conditions
Technical Implementation Notes
This tool is particularly valuable for educational purposes because it combines visual and quantitative analysis in a single interface, allowing students to develop both intuitive and analytical understanding of price-EMA relationships.
Price Imbalance as Consecutive Levels of AveragesOverview
The Price Imbalance as Consecutive Levels of Averages indicator is an advanced technical analysis tool designed to identify and visualize price imbalances in financial markets. Unlike traditional moving average (MA) indicators that update continuously with each new price bar, this indicator employs moving averages calculated over consecutive, non-overlapping historical windows. This unique approach leverages comparative historical data to provide deeper insights into trend strength and potential reversals, offering traders a more nuanced understanding of market dynamics and reducing the likelihood of false signals or fakeouts.
Key Features
Consecutive Rolling Moving Averages: Utilizes three distinct simple moving averages (SMAs) calculated over consecutive, non-overlapping windows to capture different historical segments of price data.
Dynamic Color-Coded Visualization: SMA lines change color and style based on the relationship between the averages, highlighting both extreme and normal market conditions.
Median and Secondary Median Lines: Provides additional layers of price distribution insight during normal trend conditions through the plotting of primary and secondary median lines.
Fakeout Prevention: Filters out short-term volatility and sharp price movements by requiring consistent historical alignment of multiple moving averages.
Customizable Parameters: Offers flexibility to adjust SMA window lengths and line extensions to align with various trading strategies and timeframes.
Real-Time Updates with Historical Context: Continuously recalculates and updates SMA lines based on comparative historical windows, ensuring that the indicator reflects both current and past market conditions.
Inputs & Settings
Rolling Window Lengths:
Window 1 Length (Most Recent) Bars: Number of bars used to calculate the most recent SMA. (Default: 5, Range: 2–300)
Window 2 Length (Preceding) Bars: Number of bars for the second SMA, shifted by Window 1. (Default: 8, Range: 2–300)
Window 3 Length (Third Rolling) Bars: Number of bars for the third SMA, shifted by the combined lengths of Window 1 and Window 2. (Default: 13, Range: 2–300)
Horizontal Line Extension:
Horizontal Line Extension (Bars): Determines how far each SMA line extends horizontally on the chart. (Default: 10 bars, Range: 1–100)
Functionality and Theory
1. Calculating Consecutive Simple Moving Averages (SMAs):
The indicator calculates three SMAs, each based on distinct and consecutive historical windows of price data. This approach contrasts with traditional MAs that continuously update with each new price bar, offering a static view of past trends rather than an ongoing one.
Mean1 (SMA1): Calculated over the most recent Window 1 Length bars. Represents the short-term trend.
Mean1=∑i=1N1CloseiN1
Mean1=N1∑i=1N1Closei
Where N1N1 is the length of Window 1.
Mean2 (SMA2): Calculated over the preceding Window 2 Length bars, shifted back by Window 1 Length bars. Represents the medium-term trend.
\text{Mean2} = \frac{\sum_{i=1}^{N_2} \text{Close}_{i + N_1}}}{N_2}
Where N2N2 is the length of Window 2.
Mean3 (SMA3): Calculated over the third rolling Window 3 Length bars, shifted back by the combined lengths of Window 1 and Window 2 bars. Represents the long-term trend.
\text{Mean3} = \frac{\sum_{i=1}^{N_3} \text{Close}_{i + N_1 + N_2}}}{N_3}
Where N3N3 is the length of Window 3.
2. Determining Market Conditions:
The relationship between the three SMAs categorizes the market condition into either extreme or normal states, enabling traders to quickly assess trend strength and potential reversals.
Extreme Bullish:
Mean3Mean2>Mean1
Mean3>Mean2>Mean1
Indicates a strong and sustained downward trend. SMA lines are colored purple and styled as dashed lines.
Normal Bullish:
Mean1>Mean2andnot in extreme bullish condition
Mean1>Mean2andnot in extreme bullish condition
Indicates a standard upward trend. SMA lines are colored green and styled as solid lines.
Normal Bearish:
Mean1Mean2>Mean1
Mean3>Mean2>Mean1
Normal Bullish:
Mean1>Mean2andnot in Extreme Bullish
Mean1>Mean2andnot in Extreme Bullish
Normal Bearish:
Mean1 Mean2 > Mean3
Visualization: All three SMAs are displayed as gold dashed lines.
Median Lines: Not displayed to maintain chart clarity.
Interpretation: Indicates a strong and sustained upward trend. Traders may consider entering long positions, confident in the trend's strength without the distraction of additional lines.
2. Normal Bullish Condition:
SMAs Alignment: Mean1 > Mean2 (not in extreme condition)
Visualization: Mean1 and Mean2 are green solid lines; Mean3 is gray.
Median Lines: A thin blue dotted median line is plotted between Mean1 and Mean2, with two additional thin blue dashed lines as secondary medians.
Interpretation: Confirms an upward trend while providing deeper insights into price distribution. Traders can use the median and secondary median lines to identify optimal entry points and manage risk more effectively.
3. Extreme Bearish Condition:
SMAs Alignment: Mean3 > Mean2 > Mean1
Visualization: All three SMAs are displayed as purple dashed lines.
Median Lines: Not displayed to maintain chart clarity.
Interpretation: Indicates a strong and sustained downward trend. Traders may consider entering short positions, confident in the trend's strength without the distraction of additional lines.
4. Normal Bearish Condition:
SMAs Alignment: Mean1 < Mean2 (not in extreme condition)
Visualization: Mean1 and Mean2 are red solid lines; Mean3 is gray.
Median Lines: A thin blue dotted median line is plotted between Mean1 and Mean2, with two additional thin blue dashed lines as secondary medians.
Interpretation: Confirms a downward trend while providing deeper insights into price distribution. Traders can use the median and secondary median lines to identify optimal entry points and manage risk more effectively.
Customization and Flexibility
The Price Imbalance as Consecutive Levels of Averages indicator is highly adaptable, allowing traders to tailor it to their specific trading styles and market conditions through adjustable parameters:
SMA Window Lengths: Modify the lengths of Window 1, Window 2, and Window 3 to capture different historical trend segments, whether focusing on short-term fluctuations or long-term movements.
Line Extension: Adjust the horizontal extension of SMA and median lines to align with different trading horizons and chart preferences.
Color and Style Preferences: While default colors and styles are optimized for clarity, traders can customize these elements to match their personal chart aesthetics and enhance visual differentiation.
This flexibility ensures that the indicator remains versatile and applicable across various markets, asset classes, and trading strategies, providing valuable insights tailored to individual trading needs.
Conclusion
The Price Imbalance as Consecutive Levels of Averages indicator offers a comprehensive and innovative approach to analyzing price trends and imbalances within financial markets. By utilizing three consecutive, non-overlapping SMAs and incorporating median lines during normal trend conditions, the indicator provides clear and actionable insights into trend strength and price distribution. Its unique design leverages comparative historical data, distinguishing it from traditional moving averages and enhancing its utility in identifying genuine market movements while minimizing false signals. This dynamic and customizable tool empowers traders to refine their technical analysis, optimize their trading strategies, and navigate the markets with greater confidence and precision.
Multi EMA Indicator ViscontiA single indicator including 4 EMAs developed for timeframe D
EMA 9, EMA 30, EMA 130, EMA 365
Bollinger Bands with SMAs, MFI, and Volumemanaging long positions based on the 9, 21, and 50 simple moving averages (SMAs) into the Pine Script that already includes Bollinger Bands, we need to define the following conditions:
Long Position Conditions:
Enter a long position when the 9-period SMA crosses above the 21-period SMA.
Confirm the long position when the 9-period SMA bounces off the 21-period SMA.
Maintain the long position if the 9-period SMA crosses above the 50-period SMA.
The position remains long if the price retraces and then bounces off the 50-period SMA.
Elisathe indicator uses Bollinger Bands with various moving average types. The strategy rules are to go long when the price closes above the upper band and close the long when it closes below the lower band. So, the entry and exit conditions are based on the close relative to the bands.
EMA Cross with Bollinger Bands & SMIIOThis intergrates the 3 indicators to provide a more accurate display of what happening to the market.
Bank Nifty Buy/Sell Strategyits a low risk strategy where it shows when to buy for scalping a quick 50 to 100 points
2 ma 1 EmaMakes it easy to plot ma and Ema
3 indicators combined into one
2 simple moving averages
1 exponential moving average